Continuity and Differentiability

Question 1.

The derivative of f(tan x) w.r.t. g(sec x) at $x = \frac{\pi}{4}$, where f'(1) = 2 and g'($\sqrt{2}$) = 4, is

- (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$
- (c) 1
- (d) 0

Answer:

(a) $\frac{1}{\sqrt{2}}$

Question 2.

The derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to

$$\cot^{-1}\left(\frac{1-3x^2}{3x-x^3}\right)$$
 is

(a)

(b) $\frac{3}{2}$

(c) $\frac{2}{3}$

Answer:

(c) $\frac{2}{3}$

Question 3.

The derivative of

$$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is

(a)

(b) 1

(c)
$$\frac{1}{1-x^2}$$

(d)
$$\frac{1}{1+x^2}$$

Answer:

(b) 1

Question 4.

img src="https://live.staticflickr.com/65535/50354653758 a00e3fc2ee o.png" width="374" height="162" alt="Maths MCQs for Class 12 with Answers Chapter 5 Continuity and Differentiability O34">

Answer:

(c)
$$\frac{5}{16t^6}$$

Question 5.

If
$$y = (x + \sqrt{1 + x^2})^n$$
, then $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx}$ is

(a)
$$n^2y$$

(b)
$$-n^2y$$

(d)
$$2x^2y$$

Answer:

(a)
$$n^2y$$

Question 6.

If
$$x = a \sin \theta$$
 and $y = b \cos \theta$, then $\frac{d^2y}{dx^2}$ is equal to

(a)
$$\frac{a}{b^2} \sec^2 \theta$$

(b)
$$\frac{b}{a} \sec^2 \theta$$

(c)
$$\frac{b}{a^2} \sec^3 \theta$$

(c)
$$\frac{b}{a^2} \sec^3 \theta$$
 (d) $-\frac{b}{a^2} \sec^3 \theta$

Answer:

$$(d) - \frac{b}{a^2} \sec^3 \theta$$

Question 7.

If
$$y = a^x$$
, b^{2x-1} , then $\frac{d^2y}{dx^2}$ is

(a)
$$y^2 \cdot \log ab^2$$
 (b) $y \cdot \log ab^2$

(b)
$$y \cdot \log ab^2$$

(c)
$$y \cdot (\log ab^2)^2$$
 (d) $y \cdot (\log a^2b)^2$

$$y \cdot (\log a^2 b)^2$$

Answer:

(c) y.
$$(\log ab^2)^2$$

Question 8.

If
$$y = \frac{\ln x}{x}$$
, then the value of y''(e) is

(b)
$$-\frac{1}{e}$$

(c)
$$-\frac{1}{e^2}$$

(d)
$$-\frac{1}{e^3}$$

$$(d) - \frac{1}{e^2}$$

Question 9.

If
$$x = a(\cos\theta + \theta\sin\theta)$$
, y

=
$$a(\sin\theta - \theta\cos\theta)$$
, then $\frac{d^2y}{dx^2}$ =

(a)
$$\frac{\sec^3 \theta}{a\theta}$$

(b)
$$\frac{\sec^2\theta}{\theta}$$

(c)
$$a\theta\cos^3\theta$$

(d)
$$\frac{\sec^2 \theta}{a}$$

Answer:

(a)
$$\frac{\sec^3\theta}{a\theta}$$

Question 10.

If
$$y^2 = ax^2 + bx + c$$
, then $\frac{d}{dx}(y^3y_z) =$

(a)

(b)
$$-1$$

(c)
$$\frac{4ac - b^2}{a^2}$$

Answer:

(d) 0

Question 11.

If
$$f(x) = \sqrt{1 + \cos^2(x^2)}$$
, then the value of $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is

(a)
$$\frac{\sqrt{\pi}}{6}$$

(b)
$$-\sqrt{\frac{\pi}{6}}$$

(c)
$$\frac{1}{\sqrt{6}}$$

(d)
$$\frac{\pi}{\sqrt{6}}$$

Answer:

(b)
$$-\sqrt{\frac{\pi}{6}}$$

Question 12.

If
$$\sqrt{(x+y)} + \sqrt{(y-x)} = a$$
, then $\frac{dy}{dx} =$

(a)
$$\frac{\sqrt{(x+y)} - \sqrt{y-x}}{\sqrt{y-x} + \sqrt{x+y}}$$
 (b)
$$\frac{2\sqrt{x-y}}{\sqrt{x+y} - \sqrt{x-y}}$$

(b)
$$\frac{2\sqrt{x-y}}{\sqrt{x+y}-\sqrt{x-y}}$$

(c)
$$\frac{x + y + \sqrt{xy}}{\sqrt{x + y}}$$
 (d) $\frac{x^2 + y^2 + 2xy}{x^2 + y^2}$

(d)
$$\frac{x^2 + y^2 + 2xy}{x^2 + y^2}$$

(a)
$$\frac{\sqrt{(x+y)} - \sqrt{y-x}}{\sqrt{y-x} + \sqrt{x+y}}$$

Question 13.

If $xy^2 = ax^2 + bxy + y^2$, then find $\frac{dy}{dx}$

(a)
$$\frac{2ax + by + y^2}{2xy + bx + 2y}$$
 (b) $\frac{2ax + by - y^2}{2xy - bx - 2y}$

(b)
$$\frac{2ax + by - y^2}{2xy - bx - 2y}$$

(c)
$$\frac{ax + by - xy}{xy + x^2 + y^2}$$

(c)
$$\frac{ax + by - xy}{xy + x^2 + y^2}$$
 (d) $\frac{2x^2 + axy + y^2}{x^2 + y^2 + 2xy}$

Answer:

(b)
$$\frac{2ax+by-y^2}{2xy-bx-2y}$$

Question 14.

If $y = \tan^{-1} \left[\frac{\sin x + \cos x}{\cos x - \sin x} \right]$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{1}{2}$$

(b)
$$\frac{\pi}{4}$$

Answer:

(d) 1

Question 15.

The differential coefficient of $\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$

is

(a)
$$\sqrt{1-x^2}$$

$$(b) \quad \frac{1}{\sqrt{1-x^2}}$$

$$(c) \quad \frac{1}{2\sqrt{1-x^2}}$$

Answer: (c)
$$\frac{1}{2\sqrt{1-x^2}}$$

Question 16.

If
$$f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)$$
, $0 \le x < \frac{\pi}{2}$, then $f'\left(\frac{\pi}{6}\right)$ is

(a)
$$-\frac{1}{4}$$

(b)
$$-\frac{1}{2}$$

(c)
$$\frac{1}{4}$$

(d)
$$\frac{1}{2}$$

Answer:

(d)
$$\frac{1}{2}$$

Question 17.

$$\frac{d}{dx} \left\{ \csc^{-1} \left(\frac{1+x^2}{2x} \right) \right\} \text{ is equal to}$$

(a)
$$-\frac{2}{1+x^2}$$
, $x \neq 0$ (b) $\frac{2(1+x)}{1+x^2}$, $x \neq 0$

(b)
$$\frac{2(1+x)}{1+x^2}$$
, $x \neq 0$

(c)
$$\frac{2(1-x^2)}{(1+x^2)|1-x^2|}, x \neq \pm 1, 0$$

None of these (d)

Answer:

(c)
$$\frac{2(1-x^2)}{(1+x^2)|1-x^2|}$$
 , $x \neq \pm 1, 0$

Question 18.

If
$$y = \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)$$
, $x > 0$, then $\frac{dy}{dx}$ is

equal to

(a)

(b) 0

(c) $\frac{\pi}{2}$

(d) None of these

Answer:

(b) 0

Question 19.

If
$$y = e^{\frac{1}{2}\log(1+\tan^2 x)}$$
, then $\frac{dy}{dx}$ is equal to

- (a) $\frac{1}{2}\sec^2 x$
- (b) $\sec^2 x$
- sec x tan x (c)
- (d) $e^{\frac{1}{2}\log(1+\tan^2 x)}$

Answer:

(c) sec x tan x

Question 20.

If
$$y = e^{3x+7}$$
, then the value of $\frac{dy}{dx}\Big|_{x=0}$ is

(a) 1

(c) -1

(d) $3e^{7}$

Answer:

(d) $3e^{7}$

Ouestion 21.

If
$$x^2 + y^2 = 1$$
, then

(a)
$$yy'' - (2y')^2 + 1 = 0$$

(b)
$$yy'' + (y')^2 + 1 = 0$$

(c)
$$yy'' - (y')^2 - 1 = 0$$

(d)
$$yy'' + (2y')^2 + 1 = 0$$

Answer:

(b)
$$yy'' + (y')^2 + 1 = 0$$

Question 22.

If
$$y = \cos^2\left(\frac{3x}{2}\right) - \sin^2\left(\frac{3x}{2}\right)$$
, then $\frac{d^2y}{dx^2}$ is

- (a) $-3\sqrt{1-y^2}$ (b) 9y (c) -9y (d) $3\sqrt{1-y^2}$

Answer:

(c) -9y

Question 23.

The value of c in Rolle's theorem for the function, $f(x) = \sin 2x$ in $[0, \frac{\pi}{2}]$ is

- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$

Answer:

(b) $\frac{\pi}{4}$

Question 24.

The value of c in Rolle's Theorem for the function $f(x) = e^x \sin x$, $x \in [0, \pi]$ is

- (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{2}$
- (d) $\frac{3\pi}{4}$

Answer:

(d) $\frac{3\pi}{4}$

Question 25.

A value of c for which the Mean value theorem holds for the function $f(x) = \log_e x$ on the interval

- [1, 3] is
- (a) 2log₃e
- (b) $\frac{1}{2}\log_e 3$
- (c) log₃e
- (d) log_e3

Answer:

(a) 2log₃e

Question 26.

The value of c in mean value theorem for the function f(x) = (x-3)(x-6)(x-9) in [3, 5] is

- (a) $6 \pm \sqrt{(13/3)}$
- (b) $6 + \sqrt{(13/3)}$
- (c) $6 \sqrt{13/3}$
- (d) None of these

Answer:

(c) $6 - \sqrt{13/3}$

Question 27.

The value of c in Mean value theorem for the function f(x) = x(x-2), $x \in [1, 2]$ is

- (a) $\frac{3}{2}$ (b) $\frac{2}{3}$ (c) $\frac{1}{2}$ (d) $\frac{5}{2}$

Answer:

(a) $\frac{3}{2}$

Question 28.

Let
$$f(x) = \frac{1n(1+ax)-1n(1-bx)}{x}$$
, $x \ne 0$. If $f(x)$ is

continuous at x = 0, then f(0) =

- (a) a – b
- (b) a+b
- (c) b - a
- (d) lna+lnb

Answer:

(b) $\ln a + \ln b$

Question 29.

If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, & x < 0\\ a, & x = 0\\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}-4}}, & x > 0 \end{cases}$$

0, then a =

(a) 4

(b) 6

(c) 8 (d) none of these

Answer:

(c) 8

Question 30.

The number of discontinuous functions y(x) on [-2, 2] satisfying $x^2 + y^2 = 4$ is

- (a) 0
- (b) 1
- (c) 2
- (d) > 2

Answer:

(a) 0

Question 31.

Let
$$f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}, x \in \left(0, \frac{\pi}{2}\right).$$

If f(x) is continuous in $\left(0, \frac{\pi}{2}\right)$, then $f\left(\frac{\pi}{4}\right) =$

(a) 1

(b) $\frac{1}{2}$

(c) $-\frac{1}{2}$

(d) -1

Answer:

$$(c) - \frac{1}{2}$$

Question 32.

If $f(x) = \frac{\sqrt{4+x-2}}{x}$, $x \neq 0$ be continuous at x = 0, then

$$f(0) =$$

(a) $\frac{1}{2}$

(b) $\frac{1}{4}$

(c)

(d) $\frac{3}{2}$

Answer:

(b)
$$\frac{1}{4}$$

Question 33.

If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, then $\frac{dy}{dx} =$

- (a) $\frac{x+1}{x}$ (b) $\frac{1}{1+x}$
- (c) $\frac{-1}{(1+x)^2}$ (d) $\frac{x}{1+x}$

$$(c) \frac{-1}{(1+x)^2}$$

Question 34.

If $y = (1 + x)(1 + x^2)(1 + x^4)...(1 + x^{2n})$, then the value of $\frac{dy}{dx}$ at x = 0 is

- (a) 0
- (b) -1
- (c) 1
- (d) None of these

Answer:

(c) 1

Question 35.

If
$$f(x) = -\sqrt{25 - x^2}$$
, then $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ is equal

(a) $\frac{1}{24}$

- (b) $\frac{1}{5}$
- (c) -√24
- (d) $\frac{1}{\sqrt{24}}$

Answer:

(d) $\frac{1}{\sqrt{24}}$

Question 36.

If $y = ax^2 + b$, then $\frac{dy}{dx}$ at x = 2 is equal to

- (a) 4a
- (b) 3a
- (c) 2a
- (d) None of these

Answer:

(a) 4a

Question 37.

If
$$\sec\left(\frac{x^2-2x}{x^2+1}\right) = y$$
, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{y^2}{x^2}$$

(b)
$$\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$$

(c)
$$\frac{(x^2+x-1)}{y(y^2-1)}$$
 (d) $\frac{x^2-y^2}{x^2+y^2}$

(d)
$$\frac{x^2 - y^2}{x^2 + y^2}$$

(b)
$$\frac{2y\sqrt{y^2-1}(x^2+x-1)}{(x^2+1)^2}$$

Ouestion 38.

If
$$f(x) = (\log_{\cot x} \tan x)(\log_{\tan x} \cot x)^{-1} + \tan^{-1} \frac{4x}{4 - x^2}$$
,

then f'(2) is equal to

(a)
$$\frac{1}{2}$$

(b)
$$-\frac{1}{2}$$
 (d) -1

$$(d) -1$$

Answer:

(a)
$$\frac{1}{2}$$

Question 39.

If $y = \log_{10} x + \log_e y$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{y}{y-1}$$

(b)
$$\frac{y}{x}$$

(c)
$$\frac{\log_{10} e}{x} \left(\frac{y}{y-1} \right)$$
 (d) None of these

$$(c) \frac{\log_{10} e}{x} \left(\frac{y}{y-1} \right)$$

Question 40.

If
$$y = \log \left[e^x \left(\frac{x-1}{x+2} \right)^{1/2} \right]$$
, then $\frac{dy}{dx}$ is equal to

(b)
$$\frac{3}{x-2}$$

(c)
$$\frac{3}{(x-1)}$$

(d) None of these

Answer:

(d) None of these

Question 41.

If
$$x^m y^n = (x + y)^{m+n}$$
, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{x+y}{xy}$$

(c)
$$\frac{x}{y}$$

(d)
$$\frac{y}{r}$$

Answer:

(d)
$$[latex] \frac{y}{x} [/latex]$$

Question 42.

If Rolle's theorem holds for the function $f(x) = x^3 + bx^2 + ax + 5$ on [1, 3] with $c = (2 + \frac{1}{\sqrt{3}})$, find the value of a and b.

(a)
$$a = 11$$
, $b = -6$

(b)
$$a = 10$$
, $b = 6$

(c)
$$a = -11$$
, $b = 6$

(d)
$$a = 11, b = 6$$

Answer:

(a)
$$a = 11$$
, $b = -6$

Question 43.

If $y = (\tan x)^{\sin x}$, then $\frac{dy}{dx}$ is equal to

- (a) $\sec x + \cos x$
- (b) $\sec x + \log \tan x$
- (c) $(\tan x)^{\sin x}$
- (d) None of these

Answer:

(d) None of these

Question 44.

If
$$x^y = e^{x-y}$$
, then $\frac{dy}{dx}$ is

(a)
$$\frac{1+x}{1+\log x}$$

(b)
$$\frac{1 - \log x}{1 + \log x}$$

(d)
$$\frac{\log x}{(1+\log x)^2}$$

Answer:

$$(d) \frac{\log x}{(1+\log x)^2}$$

Question 45.

The derivative of $y = (1 - x)(2 - x) \dots (n - x)$ at x = 1 is equal to

$$(b)$$
 $(-1)(n-1)!$

(c)
$$n! - 1$$

$$(d) (-1)^{n-1} (n-1)!$$

Answer:

(b)
$$(-1)(n-1)!$$

Question 46.

If x^y . $y^x = 16$, then the value of $\frac{dy}{dx}$ at (2, 2) is

$$(a) -1$$

(b)
$$0$$

Answer:

$$(a) -1$$

Question 47.

If
$$y = e^{x+e^{x+e^{x+... to \infty}}}$$
, find $\frac{dy}{dx} =$

(a)
$$\frac{y^2}{1-y}$$

(b)
$$\frac{y^2}{y-1}$$

(c)
$$\frac{y}{1-y}$$

(d)
$$\frac{-y}{1-y}$$

Answer: (c)
$$\frac{y}{1-y}$$